

Neural Estimation of Energy Mover's Distance NEEMo

2

2

Robust and Provably Monotonic Networks

Ouail Kitouni, Niklas Nolte, Mike Williams NSF AI Institute for Artificial Intelligence and Fundamental Interactions Laboratory for Nuclear Science, MIT

Finding NEEMo: Geometric Fitting using Neural Estimation of the Energy Mover's Distance

Ouail Kitouni, Niklas Nolte, Mike Williams The NSF AI Institute for Artificial Intelligence and Fundamental Interactions Massachusetts Institute of Technology Cambridge, MA 02139, USA {kitouni,nnolte,mwill}@mit.edu

Niklas Nolte

Ouail Kitouni

Mike Williams

Niklas Nolte

Ouail Kitouni

Ouail Kitouni, Niklas Nolte, Mike Williams NSF AI Institute for Artificial Intelligence and Fundamental Interactions Laboratory for Nuclear Science, MIT

Robust and Provably Monotonic Networks

Mike Williams

Part 1 Lipschitz Networks

MontoneNorm

	Search or jump to		Pull requests	Issues Ma	rketplace Exp	lore
l	🖵 niklasnolte / Monot	OneNorm Publi	ic		⊙ Watch	h 1 • % Fork 0
	<> Code	ໃງ Pull requests		🗄 Project	s 🕮 Wiki	🕑 Security 🛛 🗠 Insig
	ਿੰ main 👻 ਮਿ 3 branc	hes 🛛 🛇 🛛 tags	Go to file	Add file	✓ Code ✓	About
	niklasnolte fix typo		3ac36a2	19 days ago	3 27 commits	No description, web provided.
	Examples	fix typo			19 days ago	C Readme
	monotonenorm	Added examples a	nd documentation		20 days ago	☆ 1 star
	🗅 .gitignore	initial commit			9 months ago	ੇ forks
	README.md	fix typo			19 days ago	
	🗅 setup.py	renamed project			4 months ago	Releases

https://github.com/niklasnolte/MonotOneNorm

pip install monotonenorm conda install monotonenorm -c okitouni

How does it work?

Small changes in the input should not lead to large changes in the output:

$$|f(x+\epsilon) - f(x)| \le \lambda \epsilon \qquad \forall \epsilon > 0$$

Thus we would like our Neural Network to represent a Lipschitz continuous function.

Robustness: Definition (more formally)

Robustness is achieved by constraining the operator 1-norm of the weight matrices of each layer such that

where λ is Lipschitz constant of the resulting network with respect to the ∞ -norm.

Universal Lipschitz- λ function approximation requires activations with gradient 1 almost everywhere.

→ GroupSort*: reorders inputs

*Sorting out Lipschitz function approximation [https://arxiv.org/abs/1811.05381]

Monotonicity using weight norm

g(x) is a λ -Lipschitz neural network. Adding the following residual connection

$$f(\mathbf{x}) = g(\mathbf{x}) + \lambda \sum_{i \in I} x_i$$

makes output monotonic since

$$\frac{\partial f}{\partial x_i} = \frac{\partial g}{\partial x_i} g(\mathbf{x}) + \lambda \ge 0 \quad \forall i \in I$$

Monotonic Lipschitz Networks LHCb RUN 3 trigger

This architecture is being used in the LHCb heavy-flavor RUN 3trigger.

Part 2 Neural Estimation of Energy Mover's distance

Robust and Provably Monotonic Networks

Ouail Kitouni, Niklas Nolte, Mike Williams NSF AI Institute for Artificial Intelligence and Fundamental Interactions Laboratory for Nuclear Science, MIT

Finding NEEMo: Geometric Fitting using Neural Estimation of the Energy Mover's Distance

Ouail Kitouni, Niklas Nolte, Mike Williams The NSF AI Institute for Artificial Intelligence and Fundamental Interactions Massachusetts Institute of Technology Cambridge, MA 02139, USA {kitouni,nnolte,mwill}@mit.edu

Niklas Nolte

Ouail Kitouni

Mike Williams

Finding NEEMo: Geometric Fitting using Neural Estimation of the Energy Mover's Distance

Niklas Nolte

Ouail Kitouni

Ouail Kitouni, Niklas Nolte, Mike Williams The NSF AI Institute for Artificial Intelligence and Fundamental Interactions Massachusetts Institute of Technology Cambridge, MA 02139, USA {kitouni,nnolte,mwill}@mit.edu

Mike Williams

Optimal Transport - Energy Mover's Distance

The Metric Space of Collider Events [arxiv.org/abs/1902.02346]

Optimal Transport - Energy Mover's Distance

The Metric Space of Collider Events [arxiv.org/abs/1902.02346]

$$\mathrm{EMD}(\mathbb{P},\mathbb{Q}) = \inf_{\gamma \in \Pi(\mathbb{P},\mathbb{Q})} \mathbb{E}_{(x,y) \sim \gamma} \big[\left| \left| x - y \right| \right|_2 \big],$$

$$\operatorname{EMD}(\mathbb{P}, \mathbb{Q}) = \inf_{\gamma \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{(x, y) \sim \gamma} [||x - y||_{2}],$$

Event 1

$$EMD(\mathbb{P}, \mathbb{Q}) = \inf_{\gamma \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{(x, y) \sim \gamma} [||x - y||_{2}],$$

Event 1
Event 2

The dual formulation is an optimization over 1-Lipschitz continuous functions

$$\mathrm{EMD}(\mathbb{P},\mathbb{Q}) = \sup_{||f||_{L} \le 1} \mathbb{E}_{x \sim \mathbb{P}} [f(x)] - \mathbb{E}_{x \sim \mathbb{Q}} [f(x)],$$

The dual formulation is an optimization over 1-Lipschitz continuous functions

$$\mathrm{EMD}(\mathbb{P}, \mathbb{Q}) = \sup_{\substack{||f||_{L} \leq 1 \\ \text{Kantorovich potential}}} \mathbb{E}_{x \sim \mathbb{P}}[f(x)] - \mathbb{E}_{x \sim \mathbb{Q}}[f(x)],$$

Parametrized shape: *\u00d6*

Target Distribution $\mathbb{Q} = \{e^i, \mathbf{x}^i\}_{i=1}^n$

Target Distribution $\mathbb{Q} = \{e^i, \mathbf{x}^i\}_{i=1}^n$

Possible use cases:

• Floating term for a uniform background to mitigate pileup

- Floating term for a uniform background to mitigate pileup
- Clustering with jet energy estimation

- Floating term for a uniform background to mitigate pileup
- Clustering with jet energy estimation
- Variable shape clusters (learned radii, ellipses, arbitrary shapes, etc.)

- Floating term for a uniform background to mitigate pileup
- Clustering with jet energy estimation
- Variable shape clusters (learned radii, ellipses, arbitrary shapes, etc.)
- New (and old) observables: N-subjet, Ncircle, triangularness, etc.

Possible use cases:

- Floating term for a uniform background to mitigate pileup
- Clustering with jet energy estimation
- Variable shape clusters (learned radii, ellipses, arbitrary shapes, etc.)
- New (and old) observables: N-subjet, Ncircle, triangularness, etc.

All in a unified framework given by the Energy Mover's Distance*

- Floating term for a uniform background to mitigate pileup
- Clustering with jet energy estimation
- Variable shape clusters (learned radii, ellipses, arbitrary shapes, etc.)
- New (and old) observables: N-subjet, Ncircle, triangularness, etc.
- All in a unified framework given by the Energy Mover's Distance*
- *Can You Hear the Shape of a Jet [https://indi.to/rbQ5j]

EIC - Applications

EIC - Applications

arXiv

https://arxiv.org/abs/2112.00038 https://arxiv.org/abs/2209.15624

https://github.com/okitouni/EnergyMover-Dual/tree/ neurips2022

Monotonenorm

NEEMo

https://github.com/niklasnolte/MonotOneNorm

pip install monotonenorm

conda install monotonenorm -c okitouni