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MontoneNorm

6

https://github.com/niklasnolte/MonotOneNorm 

pip install monotonenorm 
conda install monotonenorm -c okitouni



How does it work?



Robustness: Definition (more formally)

Small changes in the input should not lead to large changes in the output: 

  

Thus we would like our Neural Network to represent a Lipschitz continuous function. 
 

| f (x + ϵ) − f (x) | ≤ λϵ ∀ϵ > 0
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Robustness: Definition (more formally)
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Robustness is achieved by constraining the operator 1-norm of the weight 
matrices of each layer such that 

where λ is  Lipschitz constant of the resulting network with respect to the 
∞-norm.  
Universal Lipschitz-λ function approximation requires activations with gradient 
1 almost everywhere. 
→ GroupSort*: reorders inputs

L

∏
l=0

∥Wl∥1 ≤ λ

*Sorting out Lipschitz function approximation [https://arxiv.org/abs/1811.05381]

https://arxiv.org/abs/1811.05381


Monotonicity using weight norm

10

g(x) is a λ-Lipschitz neural network. Adding the following residual 
connection 

makes output monotonic since

f(x) = g(x) + λ∑
i∈I

xi

∂f
∂xi

=
∂g
∂xi

g(x) + λ ≥ 0 ∀i ∈ I



Monotonic Lipschitz Networks LHCb RUN 3 trigger

monotonic e�ciency � unconstrained NN e�ciency

beauty charm

monotonic BDT

monotonic Lipschitz NN

This architecture is being used in the LHCb heavy-flavor RUN 3trigger.
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Earth Mover’s Distance

The primal formulation of the EMD is an optimization over joint probability 
distributions

15

EMD(ℙ, ℚ) = inf
γ∈Π(ℙ,ℚ)

𝔼(x,y)∼γ[ | |x − y | |2 ],



Earth Mover’s Distance

The primal formulation of the EMD is an optimization over joint probability 
distributions

15

EMD(ℙ, ℚ) = inf
γ∈Π(ℙ,ℚ)

𝔼(x,y)∼γ[ | |x − y | |2 ],

Event 1



Earth Mover’s Distance

The primal formulation of the EMD is an optimization over joint probability 
distributions

15

EMD(ℙ, ℚ) = inf
γ∈Π(ℙ,ℚ)

𝔼(x,y)∼γ[ | |x − y | |2 ],

Event 1
Event 2



Earth Mover’s Distance

The primal formulation of the EMD is an optimization over joint probability 
distributions

15

EMD(ℙ, ℚ) = inf
γ∈Π(ℙ,ℚ)

𝔼(x,y)∼γ[ | |x − y | |2 ],

Event 1
Event 2

Energies



Earth Mover’s Distance

The primal formulation of the EMD is an optimization over joint probability 
distributions

15

EMD(ℙ, ℚ) = inf
γ∈Π(ℙ,ℚ)

𝔼(x,y)∼γ[ | |x − y | |2 ],

Event 1
Event 2 Spatial Coordinates

Energies



Kantorovich-Rubinstein - Dual Formulation

The dual formulation is an optimization over 1-Lipschitz continuous functions
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Kantorovich-Rubinstein - Dual Formulation

The dual formulation is an optimization over 1-Lipschitz continuous functions
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EMD(ℙ, ℚ) = sup
||f||L≤1

𝔼x∼ℙ[f(x)] − 𝔼x∼ℚ[f(x)],

Kantorovich potential



NEEMo Algorithm

17

Target Distribution
ℚ = {ei, xi}n

i=1

Parametrized shape: 
θ

Forward pass
Backward pass



NEEMo Algorithm

17

Parametrized Distribution
ℙ = {wi

θ, yi
θ}

m
i=1

Target Distribution
ℚ = {ei, xi}n

i=1

Parametrized shape: 
θ

Forward pass
Backward pass



NEEMo Algorithm

17

Parametrized Distribution
ℙ = {wi

θ, yi
θ}

m
i=1

Target Distribution
ℚ = {ei, xi}n

i=1

Lipschitz Network 
fϕ(x)

Parametrized shape: 
θ

Forward pass
Backward pass



NEEMo Algorithm

17

Parametrized Distribution
ℙ = {wi

θ, yi
θ}

m
i=1

Target Distribution
ℚ = {ei, xi}n

i=1

Lipschitz Network 
fϕ(x)

EMD estimation 
EMDϕ(ℙθ, ℚ)

Parametrized shape: 
θ

Forward pass
Backward pass



NEEMo Algorithm

17

Parametrized Distribution
ℙ = {wi

θ, yi
θ}

m
i=1

Target Distribution
ℚ = {ei, xi}n

i=1

Lipschitz Network 
fϕ(x)

EMD estimation 
EMDϕ(ℙθ, ℚ)

M
axim

ize      
ϕ

→
ϕ

+
∇

ϕ EM
D

ϕ

Parametrized shape: 
θ

Forward pass
Backward pass



NEEMo Algorithm

17

Parametrized Distribution
ℙ = {wi

θ, yi
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m
i=1

Target Distribution
ℚ = {ei, xi}n

i=1

Lipschitz Network 
fϕ(x)

EMD estimation 
EMDϕ(ℙθ, ℚ)

Minimize 
θ → θ − ∇θ EMDϕ

M
axim
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ϕ

→
ϕ

+
∇

ϕ EM
D

ϕ

Parametrized shape: 
θ

Forward pass
Backward pass
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Possible use cases:
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• New (and old) observables: N-subjet, N-
circle, triangularness, etc.

All in a unified framework given by the 
Energy Mover’s Distance*

*Can You Hear the Shape of a Jet [https://indi.to/rbQ5j]

https://indi.to/rbQ5j
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Asymmetric jet clustering in deep-inelastic scattering  
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Questions

https://arxiv.org/abs/2112.00038 
https://arxiv.org/abs/2209.15624

NEEMo 
https://github.com/okitouni/EnergyMover-Dual/tree/
neurips2022 

Monotonenorm 
https://github.com/niklasnolte/MonotOneNorm 

pip install monotonenorm 
conda install monotonenorm -c okitouni 20


