
This is a collection of  particles 
parametrized by :  

Examples: drawn from , 
uniform circles, disks, triangles, 
uniform rectangles, etc.
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The event to fit given by a collection 
of particles: ℚ = {Ei, xi}n

i=1

Each particle is passed individually to 
a Lipschitz 1 neural network  
with parameters . Linear layers are 
weight normed such that





To approximate the EMD well, the 
NN architecture needs to be a 
universal approximator of Lip 1 
functions. So we use GroupSort 
activation.
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Using the KR duality, a lower bound 
on the  is estimated by 
the NN which is then minimized by 
the shape parameters in the following 
minimax optimization problem:





 is the observable that describes 
how well the event  is described by 
the class of geometric objects .

EMDϕ(ℙθ, ℚ)

O(ℚ) = min
θ

max
ϕ [

n

∑
i=1

Eifϕ(xi) −
m

∑
i=1

wi
θ fϕ(yi

θ)]
O(ℚ)

ℚ
ℙ

Minimize θ → θ − ∇θEMDϕ

M
axim

ize      ϕ
→

ϕ
+

∇
ϕ EM

D
ϕ

This is a parametrization of an 
arbitrary geometric shape, for 
instance, the radius and coordinates 
of the center of a circle. Many novel 
(and old) observables can be 
constructed as such.

N-subjet  N-points

Pile-up  Uniform rectangle

N-circliness, N-diskiness, 
Triangularness, etc.

 

→
→

Parametrized shape: θ EMD Estimation

Lipschitz NNParametrized Distribution

Target Distribution

Geometric shape fitting based on Optimal 
Transport using Lipschitz Networks

Forward pass
Backward pass

NEEMo: Neural Estimation of 
Energy Mover’s Distance
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