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Abstract

Concentrated solar power (CSP) plants offer sustainable energy with the benefit
of day-to-night energy storage. The recent development of the supercritical car-
bon dioxide (sCO2) Brayton cycle made CSP plants cost-competitive. However,
the cost of cooling required for these CSP plants can vary wildly depending on
design and current cooler designs are far from optimal. Here, we optimize the
design and configuration of a dry cooling system. We develop a physics-based
simulation of the cooling properties of an air-cooled heat exchanger. Using this
simulator, we leverage recent results in high-dimensional Bayesian optimization
to find dry cooler designs that minimize lifetime cost, reducing this cost by about
67% compared to recently proposed designs. Our simulation and optimization
framework can increase the development pace of economically viable sustainable
energy generation systems.

1 Introduction and Background

Concentrated solar power holds promise as a sustainable energy source, in particular, due to the
recent reduction in the levelized cost of electricity (LCOE) [11, 15]. However, effective cooling
systems remain critical to viability. Supercritical CO2 (sCO2) cycles now enable cost-competitive
plants [6, 14, 7] contingent on cooling near the CO2 critical point, making the optimization of air
cooler designs crucial. The design of the finned-tube heat exchanger, the core component of the air
cooling system, significantly impacts the cost and performance of CSP. This heat exchanger enables
heat transfer from the sCO2 to air and depends on several parameters, such as tube dimensions, fin
configurations, and airflow patterns (Figure 7). Although prior efforts to enhance the sCO2 CSP
dry cooler design have primarily focused on individual components like heat exchanger bundles [3],
only a few aspects have undergone in-depth examination. This suprising gap in comprehensive
investigation suggests that existing dry cooler designs might be more expensive than necessary,
signifying the potential for improvement.

We present a method combining simulation and optimization to explore a broad design space. Our
physics simulator incorporates thermodynamic principles and empirical correlations to model intricate
heat exchanger (HX) configurations. We also implement an expanded cost model accounting for
materials, manufacturing, and operation. Finally, we use optimization techniques to find cost-effective
designs. Our key insight is a Bayesian optimization strategy exploiting local trust regions to navigate
the high-dimensional search space efficiently. This enables comprehensive optimization of air
cooler parameters like tube dimensions and fin configurations to minimize total lifetime cost. We
demonstrate a 67%+ cost reduction over recent designs, showing the promise of simulation-based
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optimization. This framework can accelerate the development of economical renewable energy
systems1.

2 Simulation and Optimization

Overview In this section, an overview of the problem and the approach used to frame it in a general
computer science framework is provided. Hence, the notations in this section are unique to this
section of the report. The methodological approach is framed around a well-defined optimization
goal:

minimize c(x) such that v(x) = 1 (1)
Within this construct, x represents a design configuration of the dry cooler. The cost function c(x)
calculates the cost associated with this design (also referred to as the cost calculator). Meanwhile,
v(x) is a binary function designed to assess the viability of the design. When v(x) outputs a value
of 1, it implies that the design meets the desired output temperature criteria while preserving the
supercritical state of the CO2 throughout.

At its core, this optimization task is a complex non-linear mixed-integer programming problem,
where the design vector x encapsulates both continuous and integer variables, and both the cost
function c(x) and the validity function v(x) have non-linear relationships with x. Solving such a
problem using traditional mixed-integer programming techniques would be computationally daunting
and most likely intractable. Instead, a more elegant solution strategy is proposed:

minimize c(p(x)) (2)

Here, p(x) refers to a projection function (also referred to as the simulator). Given a design vector
x, it returns a modified design vector x′ such that v(x′) = 1. This function ensures that the output
design adheres to the critical criteria, namely, achieving the target temperature while maintaining the
CO2 in its supercritical state.

Optimization In our problem setting, the cost function presents significant challenges - it is non-
differentiable and relies on external library calls, such as to CoolProp [1], to fetch temperature
and pressure data. Since these elements are complex to model directly, traditional gradient-based
optimization techniques are unsuitable. The cost of simulator evaluations also needs to make sample
efficiency a priority since the simulator evaluations take time, and this time would only increase
with more complex and accurate simulators. However, in high-dimensional problems, the space of
solutions grows exponentially, making it hard to find the global minima. Alternative optimization
methods such as genetic algorithms, finite difference methods, and Bayesian optimization come to
mind. Genetic algorithms, while inspired by biological processes, lack solid theoretical guarantees,
resulting in unpredictable outcomes. Finite difference methods, albeit reliable, tend to be slow and
become inefficient in navigating a high-dimensional problem space.

In contrast, Bayesian optimization, especially when modeled on Gaussian processes (GP), emerges
as a promising choice. GPs are well-studied, offering theoretical guarantees. Bayesian optimization
strikes a balance between exploration and exploitation, and with the integration of techniques like
TurBO [5], it can be strategically applied across the global optimization surface. Leveraging local
models ensures a comprehensive and efficient solution to the problem since this makes the framework
more scalable [5]. A diagrammatic representation of the optimization process is provided in Figure 1.

Trust Region Bayesian Optimization (TurBO) Bayesian optimization is a probabilistic framework
for the optimization of black-box functions. TurBO is a technique that allows scaling to high-
dimensional inputs using a collection of local models. This technique retains the rigorous uncertainty
estimation of BO and robustness to noisy samples. The core idea behind TurBO is to replace
the inefficient and slow convergence of a global model with BO with several independent local
surrogate models responsible for much smaller Trust regions (TR) centered around promising
solutions. Because of the TR approach, the surrogate models can approximate the objective function
much more accurately. TurBO keeps track of m local trust regions each with an independent gaussian
process (GP) model. The local posterior GP l for l = {1, · · · ,m}, is constrained to TRl, a hypercube
of side Ll. To select the ith candidate across trust regions, a realization from the local posterior in

1Code: https://gitlab.com/frontierdevelopmentlab/2022-us-cspcontroller/solair
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Figure 1: A diagrammatic representation of the optimization process. It shows the design space and
illustrates the complexity of the problem by using an optimal design and a sub-optimal one. The cost
function is approximated by a Gaussian process and shown as contour curves with red representing
higher costs than the green ones. It also illustrates how simply finding the minimum of that surface is
insufficient to find the best feasible designs. The projection step is where the simulator operates.

each TR is drawn and the candidate which minimizes the function value across all m samples and
trust regions is selected. An optimization run with a list of the parameters optimized are shown in
Figure 2 and Table 1 in Appendix A. Note that we use 5 trust regions in the experiments.

Design Cost Accurately modeling the manufacturing and operational costs is crucial for optimiza-
tion. We implement a cost calculator based on prior work [9, 10, 4] but refine it for this application.
The model has three main components: (1) Heat exchanger cost: Accounts for materials, labor,
overheads, and other factors. (2) Fan purchase cost: Initial outlay based on required air flow rates. (3)
Fan operation cost: Electricity usage over lifetime from power ratings. (see Appendix B for details).

Simulator Implementation The heat exchanger simulator is designed to model and analyze the
performance of air-cooled sCO2 coolers, taking into account various design parameters such as tube
dimensions, fin properties, and flow conditions. The implementation employs a combination of
energy conservation and empirical correlations to simulate the heat transfer process between CO2

and air streams.

Several assumptions are made in the simulator to simplify the analysis. These include steady-state
operation with constant mass flow rates for both CO2 and air, constant thermophysical properties
within each segment, uniform air distribution across tubes, negligible pressure drop for air, and
a segmented approach where tubes are divided into multiple segments treated as individual heat
exchanger units. We provide a detailed account of how this was implemented in Appendix D.
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Figure 2: Optimization curve with a rendering of best cost tube designs at selected iterations.
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3 Results and Discussion

Single-Run Optimization We show a single optimization run with 3,000 iterations at 20◦C ambient
temperature. Each blue point is a cost estimate from the full simulation of the cooler using the
parameters proposed by TurBO. As seen in the red curve of Figure 2, which represents the minimum
cost envelope over iterations, only a few (41) iterations yield improved designs, suggesting inefficiency.
The key limitation is the tube length is fixed, not an optimization variable. Still, the figure shows the
diversity of designs explored, illustrating the broad search space. Table 1 compares the reference
and optimized parameters. Despite limited variables, our approach finds a design with 67% lower
lifetime cost. Enabling tube length optimization would improve sample efficiency.

Cost Sensitivity of the Reference and Optimized Design Parameters We assess the cost sensi-
tivity of various design parameters by individually adjusting each to the optimized value obtained
through the optimization process while keeping the remaining parameters fixed at their original
reference values, with the results depicted in Figure 4. Additionally, we show the differences between
the optimized design and the reference value, which indicate significant reductions in the absolute
values of the design parameter dimensions, thereby achieving a 67.1% reduction in the lifetime cost
(see Table A and Figure 5). Ultimately, a significant amount of savings comes from the changes in
design parameters since all the header and labor costs, as well as the HX factor-associated costs, are
multiples of the material costs, as described in Appendix B.

Optimized air cooler design at different ambient temperatures The performance of any air
cooler is severely affected by ambient air temperature. In a sCO2 CSP plant, the working fluid has to
be cooled down to temperatures close to its critical point at 31◦ C, our chosen design has a set point
of 40.3◦ C. Cooling down to this temperature becomes increasingly more difficult if the temperature
of air approaches the target temperature. To maintain sufficient cooling, either the surface area of
heat exchange or the airflow needs to be increased. Both options non-linearly affect the lifetime cost
of the air cooler, so finding an ideal solution is, therefore, challenging.

This issue can be addressed with our algorithm, providing an optimized air cooler design for any
ambient air temperature. To demonstrate the versatility of the algorithm, we distinguish two scenarios.
In the first, simpler scenario, the temperature difference between air in and air out ∆Tair = Tairout −
Tairin out is kept constant for all ambient air temperatures. This means that airflow remains constant,
and only the surface area of the heat exchanger increases with temperature, limiting the effectiveness
of the heat exchanger to predetermined values. In this case, the algorithm optimizes the design of the
heat exchanger and calculates the optimized lifetime cost; see orange data in Fig. 3(b).
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Figure 3: Optimized air cooler cost for a 25MW CSP plant at varying ambient temperatures.

In the second scenario, we want to include the effectiveness of the heat exchanger in the optimization
and thus consider ∆Tair as a variable. Now both surface area and air flow are changed simultaneously.
Results are given in Fig.3(b)) (blue data) and demonstrate that this more general approach allows a
significant additional reduction of the air cooler lifetime cost.
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Both datasets exhibit an exponential fit in their minimum costs as temperature varies. The blue dataset
has more pronounced deviations from this trend, likely due to its larger optimization parameter space
since the ∆Tair is allowed to vary in this scenario. This variation in cost can be attributed to local
minima encountered within the given runtime of the algorithm. The components of the lifetime costs
in the second scenario are shown in Fig.3(a). The results show that both the heat exchanger cost and
the cost of the fans increase with temperature. The variations in fan power cost are caused by the
algorithm choosing different types of fans at different ambient temperatures.

4 Broader Impact

The development of economical and sustainable energy systems is crucial for addressing climate
change and ensuring access to affordable electricity globally. This work demonstrates the promise of
physics-based simulation and optimization to accelerate the design of renewable power technologies
like concentrated solar power. By reducing air cooling costs, a major expense, the methods presented
could enable CSP competitiveness with conventional energy sources. Importantly, the framework
is generalizable to optimizing any engineered component, and we encourage its adoption across
engineering disciplines. Widespread use of simulation-optimization would enhance design across
sectors like aerospace, biomedical, and computing, catalyzing innovation.

Focusing on energy, affordable clean electricity empowers human development through healthcare,
education, infrastructure and more. Transitioning to renewables like CSP with integrated sCO2

thermal storage could reduce competition between nations over rare resources needed for batteries,
like lithium and cobalt. Storing energy in sCO2 instead of batteries that require scarce minerals
would alleviate geopolitical tensions. However, scaling new technologies requires thoughtful policies
to equitably distribute costs and benefits. Intentional design is also needed to minimize risks like
land use impacts. Overall, the simulation tools here represent an opportunity to responsibly shape an
energy future that is clean, just and prosperous.
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A Optimized Parameters

Design Parameter Optimized Value Reference Value

Tube inner diameter, dintube 10.452 20.000
Tube outer diameter, douttube 11.497 25.000
Fin inner diameter, dinfin 11.673 28.000
Fin outer diameter, doutfin 22.962 57.000
Tube transverse pitch, ST 37.558 58.000
Fin pitch, s 2.827 2.800
Fin thickness, tfin 0.286 0.500

Table 1: Comparison of parameters for the referenced design and optimized designs. All values are
expressed in millimeters.
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B Cost Calculations

Note the following assumptions in the calculation:
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• All parts last an entire lifespan of 25 years.
• Cost of electricity in fan power consumption is assumed to be $0.05 per kWh.
• No maintenance costs/fouling are considered.
• Fan loading is in an optimal range.
• Forced/induced draft is not considered separately.

The calculation procedure used to calculate the cost of the heat exchanger, that associated with the
fan(s), and the resultant total lifetime cost of the heat exchanger, respectively are provided below:

L = Lsegment · nsegments (3)

ctube

L
=

π
(
dtube

out
2 − dtube

in
2
)

4
ρt.m.ct.m. (4)

cfin

L
=

π

4s
ρf.m.cf.m.

((
dfin

out
2 − dfin

in
2
)
tfin +

(
dfin

in
2 − dtube

out
2
)
· (s− tfin)

)
(5)

cfinned-tube

L
=
(
fweighting ·

(ctube

L
+

cfin

L

))
+

cfixed
finned-tube

L
(6)

ctotal
finned-tubes =

cfinned-tube

L
· Lsegment · nsegments · ntubes-in-row · nrows · nbundles (7)

cno-fans
air-cooler = ctotal

finned-tube · (1 + fheader) · (1 + flabour) · fHX (8)

cinitial
fans = nfans-required · cpurchase

fan (9)

coperation
fans = nfans-required

Pfan

1000
LCOE (24 · 365 · nlifetime-years) (10)

clifetime
fans = cinitial

fans + coperation
fans (11)

ctotal
HX = clifetime

fans + cno-fans
air-cooler (12)

where:

• L: total length of the tubes,
• nsegments: number of segments comprising the length of tube,
• ctube: cost of tube material in 1 finned-tube,
• dtube

out : outside diameter of tubes,
• dtube

in : inside diameter of tubes,
• ρt.m.: density of tube material [kg m−3],
• ct.m.: cost of tube material [$ / kg],
• cfin: cost of fin material in 1 finned-tube,
• s: fin pitch, ρf.m.: density of fin material [kg m−3],
• cf.m.: cost of fin material [$ / kg],
• dfin

out: outside diameter of fins,
• dfin

in : inside diameter of fins,
• tfin: thickness of fins,
• cfinned-tube: cost of producing 1 finned-tube,
• fweighting: weighting factor of tube and fin material to estimate total material quantities,

• cfixed
finned-tube: fixed costs associated with producing the finned-tubes,

• ctotal
finned-tubes: total cost of producing all the finned-tubes in the heat exchanger,

• ntubes-in-row: number of tubes in a row per bundle,
• nrows: number of rows of finned-tubes in the heat exchanger,
• nbundles: number of bundles in the heat exchanger,
• cno-fans

air-cooler: cost of air cooler only (without any fan-associated costs),
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• fheader: factor applied to calculate the header costs for producing heat exchanger,

• flabour: factor applied to calculate the labour costs in producing the heat exchanger,

• fHX: factor applied on top for entire heat exchanger,

• cinitial
fans : cost of purchasing all the fans required to compensate for air pressure drop,

• nfans-required: number of fans required to compensate for air pressure drop,

• cpurchase
fan : cost of purchasing 1 fan,

• coperation
fans : cost of operation of fans throughout their lifetime,

• Pfan: power requirement of 1 fan [W],

• LCOE: levelized cost of electricity [$ / kWh],

• nlifetime-years: lifetime of fans in years,

• clifetime
fans : cost of fans over entire lifetime, and

• ctotal
HX : total cost of entire heat exchanger over its lifetime.

The total cost comprises the cost of the air cooler itself and the lifetime cost of purchasing and running
its fans. The cost of the cooler comprises the material cost of the finned tube (which comprises the
cost of the tube and the fins and depends on the length of the tubes, the diameters of tube and fins and
fin thickness) weighted to account for overhead related to construction and labour. The lifetime fan
cost depends on the number of fans, their power requirement, the levelized cost of electricity, and the
predicted lifetime.

C Optimized cooler costs in different regions of the world

We can apply the pipeline we developed for a variety of ambient conditions. While we do not provide
a full study of the various costs associated with building CSP plants in different regions around the
world, we supply examples of the total expected costs of the cooling systems for a hypothetical power
plant in select locations across the globe.

Figure 6: Global mean temperature map and comparison of optimized air cooler cost for a 25 MW
CSP plant at selected locations on Earth
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D Algorithm

Algorithm 1 1-D sCO2 Heat-Exchanger Dynamic Length Simulation:

Input: Tc(0), Th(0), Pc(0), Ph(0), T
target
h

n = 0
while Th(n) > T target

h do ▷ If final segment temperature is too high increase the # of segments
n = n+ 1
L = Th(n−1) − 1
U = Th(n−1)

Th(n) = (L+ U)/2
Th(n) → Compute Qn, Qhtc

while Qn ̸= Qhtc do
Th(n) = BinarySearch(L, U)
Ph(n) ← Compute pressure drop
Qn, Qhtc ← EnergyBalance(Th(n), Th(n−1), Tc(0), Ph(n), Ph(n−1))

end while
QCO2(n) ← HeatReleased(Th(n), Th(n−1), Ph(n), Ph(n−1))

Tc(n) ← AirTemperature(QCO2(n), Tc(0))
end while

We present Algorithm 1 implemented for the heat exchanger dynamic length simulation.

To solve for temperatures and pressures at different points within the system, the simulator employs
an iterative approach. First, it initializes a Simulator or DynamicLength instance with specified
design parameters. Then, for each tube row in a sub-heat exchanger, it calls _solve_tube() method
with initial conditions for CO2 pressure (p_co2_init), temperature (t_co2_init), and optionally
air inlet temperature(s) (t_air_init). This method solves for temperatures and pressures at each
segment along a tube by calling _solve_segment() method iteratively.

In _solve_segment(), binary search is performed on output CO2 temperature until the energy
balance equation is satisfied within specified tolerance limits. For intermediate SHXs after the first
one (_intermediate_shx()), binary search is performed on initial conditions until mean outlet
temperature converges within tolerance limits. The calculated temperatures and pressures for each
segment are stored in the results dictionary during the simulation process.

The simulator uses physics-based equations such as energy balance equation to ensure that energy
transferred from CO2 to air through convection equals the energy change in CO2 due to temperature
variation and pressure drop. It also employs Log Mean Temperature Difference (LMTD) to calculate
an average temperature difference between hot (CO2) and cold (air) streams across a segment. Addi-
tionally, it computes an Overall Heat Transfer Coefficient based on tube geometry, fluid properties,
and flow conditions. Finally, it estimates pressure drop across a segment using Darcy-Weisbach
equation or other appropriate correlations.

By combining these physics equations with iterative solution techniques like binary search and
segmented approach, this simulator can efficiently solve complex systems like multi-row heat
exchangers with varying lengths or designs while maintaining accuracy in performance calculations.

D.1 Simulator

A computational approach to simulate temperature and pressure changes across a direct air-to-CO2

heat exchanger/dry cooler, specifically in concentrated solar power applications, is replicated as per
prior work [8, 2]. This segment-by-segment approach, described in this entire section, allows for
detailed adjustments of key design parameters to optimize performance, hence reduce the overall
costs of producing and operating such a heat exchanger.
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The heat exchanger is first split into two-dimensional segments perpendicular to the cross-section of
the tubes. The heat transfer Qi,j in each segment (i, j) is then calculated using:

Qi,j = Ohtc(i,j)∆Ti,j (13)

= ṁc

(
Tc(i,j+1) − Tc(i,j)

)
(14)

= ṁh(Th(i,j) − Th(i+1,j)) (15)
where ṁc and ṁh are the mass flow rates of the air (cold fluid) and the sCO2 (hot fluid) respectively,
and where ∆Ti,j is the log-mean temperature difference, defined by:

∆Ti,j =
∆Tyi,j

−∆Txi,j

ln∆Tyi,j − ln∆Txi,j

(16)

with ∆Tyi,j
= Th(i,j) − Tc(i,j+1) and ∆Txi,j

= Th(i+1,j) − Tc(i,j) where Th and Tc represent the
temperatures of the hot and cold fluids respectively.

The overall heat transfer coefficient Ohtc(i,j) is then computed as follows:

Ohtc(i,j) =
[
Rt(i,j) +Ra(i,j) +Rw(i,j)

]−1
=

[
1

hs(As
sCO2

)
+

1

hair(As
air)eff

+ 0

]−1

(i,j)

(17)

where Rt(i,j), Ra(i,j), and Rw(i,j) are the tube-side, the air-side, and the wall resistances, respectively
at segment (i, j). Note that the wall resistances are assumed to be negligible in the analysis.

The air-side heat transfer cross-sectional and surface areas are given by Equations 18 and 19 respec-
tively [8, 13].

Ac
air = (ST − dinfin)Ltube − (doutfin − dinfin)tfinnfin (18)

(As
air)eff = πdinfin(Ltube − tfinnfin) + πnfin

(
doutfin

2 − dinfin
2

2
+ doutfin tfin

)
ηfin (19)

As
sCO2

= πdintubeLtube (20)

ηfin =
tanh

(√
2hair

kf.m.tfin
Φ
(

dout
tube

2

))
√

2hair

kf.m.tfin
Φ
(

dout
tube

2

) where Φ =

(
doutfin

douttube

− 1

)[
1 + 0.35 ln

(
doutfin

douttube

)]
(21)

where Ac
air: area of cross-section of air exposed to the flow, ST: transverse pitch of tubes, dinfin: inside

diameter of fins, doutfin : outside diameter of fins, tfin: thickness of fins, nfin: number of fins on each
finned-tube, As

air: surface area of air exposed to heat exchange, i.e. surface area of tube that is in
contact with air, Ltube: length of finned-tube, dintube: inside diameter of tubes, ηfin: fin efficiency,
hair: air-side heat transfer coefficient, douttube: outside diameter of tubes, kf.m.: thermal conductivity
of fin material [W m−1 K−1], and As

sCO2
: surface area of sCO2 exposed to heat exchange, surface

area of tube that is in contact with sCO2.

The direct calculation of the outgoing thermodynamic properties in the heat exchanger is complicated
due to the complex, non-linear, and non-differentiable factors involved in computing the overall heat
transfer coefficient within each segment. Therefore, an iterative approach involving a binary search is
used to solve for the outgoing sCO2 temperature which satisfies Equations 13, 14 and 15. Note that
this strategy is based on the assumption that the overall heat transfer coefficient, Ohtc(i,j), and by
extension the heat transferred, is a monotonic function of outgoing sCO2 temperature.

It is possible that, for a set of design parameters, a simulation run does not achieve the required outlet
sCO2 properties and to avoid this, the length of the tubes is dynamically adjusted to guarantee a
successful design, possibly leading to higher overall cooler volumes and higher material costs. Should
the volume be an important design constraint, the current procedure would need to be extended to
accommodate this. Note that more detailed descriptions of the simulator are provided later on this
section.

Using the same notation for geometrical variables as in Figure 7, the friction coefficients of airflow
across finned tubes, Cfair are given below by Equations 22 and 23 for the simplified range of
dimensions specified below:

Cfair = 9.645 · Remax
−0.316

(
ST

douttube

)−0.937

(22)
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(a) Cross-section of finned-tube showing di-
mensions [2]

(b) Tube bank with equilateral triangular arrangement:
ST = SD [17]

Figure 7: Finned-tube dimensions and configuration

Cfair = 3.805·Remax
−0.234

(
s

doutfin

)0.251(
s

Lf

)−0.759(
doutfin

douttube

)−0.729(
douttube

ST

)0.709(
SL

ST

)−0.379

(23)

Lf =
doutfin − dinfin

2
(24)

where Remax: Reynolds number defined with the outside diameter douttube and maximum velocity in the
smallest cross-sectional area, and SL: longitudinal pitch of tube arrangement (in Figure 7(b), using
Pythagoras’ Theorem: SD

2 = SL
2 + (ST/2)

2).

Note that the simplified range of dimensions used, which is a constrained form of the problem, is such
that equation 22 is used when the fin size is greater than 0.0063m, and equation 23 is used otherwise.
The full set of constraints under which these can be used is provided in prior work [16, 17].

These equations are then used to calculate the air pressure drop across the finned-tube [16, 17]. Note
that in this project, the air pressure drop, ∆pair is approximated by assuming that four rows of tubes
are used with a configuration similar to Figure 7(b) for all designs.

∆pair =
G2

air

2ρair
(Cfair · 4 · nrows) (25)

where Gair: flow mass velocity of air [kg m−2s−1], ρair: density of air and nrows: number of rows of
tube per bundle.

This is then used to calculate the airflow for all the available fans which is in turn used to calculate
the number of fans required, nfans as follows:

nfans =
ṁair × 3000

airflowfanmodel
(26)

where ṁair: mass flow rate of air [kg s−1], the factor of ×3000 is for the conversion of the mass flow
rate of air to [m−3h−1] and airflowfanmodel: airflow of 1 fan of a specific model [m−3h−1].

This is then input into the cost calculator as described in Appendix B.

The air-side heat transfer coefficient, hair is given by the following equation [8, 2, 18]:

hair =
kair
douttube

(
0.134 · Pr

1
3

airRe0.681air

(
2(s− tfin)

doutfin − dinfin

)0.2(
s− tfin
tfin

)0.1134
)

(27)

where Reair: Reynolds number of air, Prair: Prandtl number of air, kair: thermal conductivity of air
[W m−1 K−1], douttube: outside diameter of tube, s: fin pitch, tfin: thickness of fins, doutfin : outside
diameter of fin, and dinfin: inside diameter of fin.
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To calculate the heat transfer coefficient of sCO2, first calculate the pseudo-critical temperature of
the fluid at a specified pressure P [bar] using the equation below [8, 12]:

Tpc = 273.15− 122.6 + 6.12P − 0.1657P 2 + 0.01773P 2.5 − 0.0005608P 3 (28)

where Tpc: pseudo-critical temperature of sCO2 [K] and P : pressure of sCO2 [bar].
The sCO2-side heat transfer coefficient, hs is then given by the following equation [8, 2, 3, 18]:

hs =
ksNus
dintube

= a (Res)
b
(Prs)

c

(
ρpc
ρs

)n(
ks

dintube

)
(29)

When Ts > Tpc : a = 0.14, b = 0.69, c = 0.66, n = 0 (29a)
When Ts ≤ Tpc : a = 0.013, b = 1.0, c = −0.05, n = 1.6 (29b)

where Res: Reynolds number of sCO2, Prs: Prandtl number of sCO2, Nus: Nusselt number of the
sCO2, ks: thermal conductivity of sCO2 [W m−1 K−1], ρpc: density of sCO2 at pseudo-critical point
[kg m−3], and ρs: density of sCO2 [kg m−3].

The following equations are used to calculate the sCO2 pressure drop, ∆ps along a tube segment,
Lsegment [8, 2, 18]:

Cfs = 8

( 8

Res

)12

+

2.457

ln
 1(

7
Res

)0.9
+ 0.27

(
ϵ

din
tube

)


16

+

(
37530

Res

)16


− 3

2


1
12

(30)

us =
ṁs

ρs
π(din

tube)
2

4

=
4ṁs

ρsπ
(
dintube

)2 (31)

∆ps =
ρsCfs (us)

2

2dintube
Lsegment (32)

where ϵ: relative surface roughness of tube, dintube: inside diameter of tube, and Res: Reynolds
number of sCO2, us: flow velocity of sCO2 [m s−1], ρs: density of sCO2 [kg m−3], ṁs: mass flow
rate of sCO2 [kg s−1], Cfs : friction coefficient of sCO2 through the tube, and Lsegment: length of
tube segment.

Dynamic Length Simulator The Dynamic Length Simulator (DLS) is designed to optimize the
length of tubes in a system by incrementally increasing the number of tube segments until a target
temperature is reached. The DLS calculates relevant temperatures along each row, one tube at a time,
and employs an energy balance approach to ensure accurate results.

Simulation Process Note that this part of the simulation involves using CoolProp. It is an open-source
database of fluid and humid air properties, formulated based on the most accurate formulations in
open literature. It has been validated against the most accurate data available from the relevant
references [1]. The simulation is described in the following series of steps:

1. Initialisation: The simulation begins by recovering the output air temperature along the
length of the previous tube segment

2. Dynamic Scaling: Using dynamically scaled temperature bounds, a binary search over
output sCO2 temperatures is performed for each segment

3. Downstream Propagation: The solver progresses downstream from the first row of tubes
that meets a roughly uniform air temperature, and continues downstream for the remaining
rows of tubes where each segment encounters monotonically decreasing air temperatures.

4. Energy Balance Propagation: Starting with the inlet sCO2 temperature, the solver propagates
energy balance downstream of the sCO2 flow along each tube segment. The number of these
segments is increased until the average outlet sCO2 temperature across all tubes (in the first
row in contact with the air inlet) reaches the target sCO2 outlet temperature.

Energy Balance Calculation It is vital that energy conservation is satisfied throughout the simulation
process. This is done by calculating the required energy balances in the following steps:

13



1. Calculate the energy lost by sCO2 using both guessed output sCO2 temperature and known
input values for air and input sCO2 temperatures (Equation 15)

2. Determine output air temperature based on energy balance between air and sCO2 (Equation
14): If air is too hot (hotter than input/output sCO2), re-evaluate with a higher output sCO2

temperature.
3. Compute the overall heat transfer (Qoht) from the tube segment at given air and sCO2

temperatures and pressures using Equation 13. Then:
• If Qoht ≈ QsCO2

: Done
• If Qoht > QsCO2

: Decrease output sCO2 temperature due to insufficient heat radiation
from sCO2

• If Qoht < QsCO2 : Increase output sCO2 temperature due to excessive heat radiation
from CO2
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